• Python 存储大量 NumPy Array 等数据的方案:HDF5

    对于序列化保存各种 array / data frame 等类型的数据,一直以来有各种各样的办法。例如我用过的,对于简单的一个 array,NumPy 有提供读写的方法;pandas 也有对应的 data frame 读写;而字符串/字典,可以变成 json 保存等。

    但是,如果数量多了,例如有 100 个 array,上面的方法就不太方便了。我比较懒,会把这些 array 放到一个 dict 里面,然后用 pickle 把这个 dict pickle下来——保存和读取都非常方便,而且兼容所有数据类型。

    后来,数据量多了之后,就发现 pickle 的方案也是有缺点的,就是性能不好(文末有初步的性能对比)。所以调研了一下后,选择了 HDF5。以前只是听过,没有用过,现在用了感觉不错,在下面稍微总结一下。

    目标用户

    无论是科学研究,还是各行各业,都有 HDF5 的身影。高效、跨平台、无上限,尤其适合数据量大的情景。见官网的 Who Uses HDF?

    安装

    HDF5 支持各种语言,Python 对应的库是 h5py。

    $ pip install h5py
     or
    $ conda install h5py  # Anaconda

    核心概念

    HDF5 里只有 2 种类型:datasetgroup
    – dataset 就像数组,类似 Python 的 list (一维或多维),或 NumPy 的 ndarray。dataset 的语法和 ndarray 类似。
    – group 就像 Python 的 dict,在我看来,它更像是带路径的文件夹。group 的语法和 dict 类似。

    就像是在一层一层的文件夹中,存放着不同的 dataset。记住以上两点,就🆗

    阅读更多…
  • 使用 Nginx+Gunicorn 部署 Flask,with venv+systemd

    记录一下我的部署过程。

    Flask

    文件为 /root/myproject/application.py,其中的 Flask 实例为

    app = Flask(__name__)

    Gunicorn

    /root/myproject/ 中新建一个虚拟环境 venv 并激活虚拟环境,使用 pip 安装 Flask 等模块。然后安装 gunicorn:

    pip install gunicorn

    装好之后,执行命令:

    gunicorn --bind 127.0.0.1:8000 application:app   # application为文件名 app为实例名

    http://127.0.0.1:8000 应该是可以访问的。(服务器可能需要做一下端口转发,不然就绑定 0.0.0.0)

    Systemd

    我希望服务器重启后,也可以自动启动 web server。

    新建 /usr/lib/systemd/system/gunicorn.service,内容如下:

    [Unit]
    Description=gunicorn daemon
    After=network.target
    
    [Service]
    WorkingDirectory=/root/myproject
    ExecStart=/root/myproject/venv/bin/gunicorn -w 1 --bind 127.0.0.1:8000 application:app
    PrivateTmp=true
    Environment=key=value
    
    [Install]
    WantedBy=multi-user.target

    然后执行 systemctl enable gunicorn,重启一下服务器,之后执行 systemctl status gunicorn 确认服务正常启动。这里备注一下“Environment=key=value”这一行,systemd 启动的服务是不带环境变量的,被这个坑了好久🤣。

    Nginx

    最后,我使用 nginx 进行转发,和实现 https 访问。修改 /etc/nginx/conf.d/default.conf

    server {
        listen       443 ssl;
        server_name  myproject;
    
        access_log  /var/log/nginx/access.log;
        error_log   /var/log/nginx/error.log;
    
        location / {
            proxy_pass http://127.0.0.1:8000;
            proxy_redirect     off;
            proxy_set_header   Host                $host:$server_port;
            proxy_set_header   X-Real-IP           $remote_addr;
            proxy_set_header   X-Forwarded-For     $proxy_add_x_forwarded_for;
            proxy_set_header   X-Forwarded-Proto   $scheme;
         }
    
        ssl_certificate     /path/yourssl.cer;
        ssl_certificate_key /path/yourssl.key;
        ssl_session_timeout  5m;
        ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE:ECDH:HIGH:!NULL:!aNULL:!MD5:!ADH:!RC4;
        ssl_protocols TLSv1.1 TLSv1.2;
        ssl_prefer_server_ciphers on;
    }

    最后,测试一下 https://server_ip 看看能不能访问。

  • Python 性能分析之每行耗时 line_profiler

    大家都知道,Python 的运算性能不是很强,所以才有了那么多用 C/C++ 来计算的第三方 Python 包,还有各种各样的加速实践。

    那么,应该加速哪些代码呢?我之前一般用自带的 cProfile,然而它的输出确实不是太好看,夹杂了非常多无用的信息。

    最近才发现了 line_profiler 这个第三方扩展,用起来比 cProfile 直观很多。

    安装

    pip install line-profiler

    安装需要编译器。如果在 Windows 平台,需要自行先安装 C++ 编译器。如果不想装麻烦的 VC++,可以转而在 这里 下载别人编译好的 .whl 安装包。在 Linux/Mac 上面就简单很多,编译环境肯定有的。 最近发现新版的已经不需要了,Windows 也有了编译好的包,可以直接安装。

    使用

    在需要 profile 的函数前,加上”@profile”,例如下面的 xxxxxx.py:

    @profile
    def main():
        l = [i for i in range(10000)]
        s = set(l)
    
        for _ in range(1000):
            if 9876 in l:
                pass
            if 9876 in s:
                pass
    
    if __name__ == '__main__':
        main()

    这个”@profile”只是一个标记,不是 Python 的语句,所以会导致代码不能直接运行,只能用专门的方法运行(下面有),这不是太方便(目前的版本是这样)。

    经过一点使用,了解到 @profile 的用法有一点限制,不可以对 class 打标签,但是可以打在 class 的方法上;子函数也可以用;并且可以同时 profile 多个函数 。

    然后,运行:

    kernprof -v -l xxxxxx.py

    我们就得到了结果:

    Wrote profile results to xxxxxx.py.lprof
    Timer unit: 1e-06 s
    
    Total time: 0.076552 s
    File: xxxxxx.py
    Function: main at line 2
    
    Line #      Hits         Time  Per Hit   % Time  Line Contents
    ==============================================================
         2                                           @profile
         3                                           def main():
         4         1        965.0    965.0      1.3      l = [i for i in range(10000)]
         5         1        792.0    792.0      1.0      s = set(l)
         6
         7      1001       1278.0      1.3      1.7      for _ in range(1000):
         8      1000      71133.0     71.1     92.9          if 9876 in l:
         9                                                       pass
        10      1000       1297.0      1.3      1.7          if 9876 in s:
        11      1000       1087.0      1.1      1.4              pass

    可以发现,第 8 行的地方,无论是每次运行(Per Hit),还是总耗时(% Time),都占用了大量的时间。所以就改为第 10 行的用法,马上快了几十倍。

    参考

    1. https://github.com/rkern/line_profiler
    2. https://github.com/pyutils/line_profiler 这个是新版本

  • Python 多进程共享内存、NumPy 数组 | Sharing NumPy Array When Using Python Multiprocessing

    背景

    当前的项目需要对大型 numpy 数组进行各种运算(不是深度学习的那种运算),实践发现只开一个 python 进程时,只能使用一个 CPU 核心。所以考虑使用 multiprocessing 模块进行多进程运算。

    但是,问题也很明显:用的是 multiprocessing.pool,如果我的 pool 的 size 是 4,一个 GB 级的 ndarray 传给 pool,会复制 4 份到每一个子进程。这首先会在传输时花时间做相应的 pickle 和 unpickle 操作;更重要的是,这坨数据会在内存里复制 4 份——这直接导致能处理的最大数据大小缩小了四分之三。

    本文使用的 Python 版本为 3.6 / 3.7,Windows 系统。
    在 3.8 版本中,新加入了 multiprocessing.shared_memory 模块,应该能简化这个问题。但是目前为止,项目使用的部分包还不支持 3.8,所以仍需要在旧版本中解决这个问题。

    Value 与 Array

    在 multiprocessing 包中,提供了一些可共享的对象:Value、Array、RawValue 与 RawArray。基本上,前者没有 Raw 的,可以加锁以进行进程间同步,后面 Raw 的没有锁。项目中用到的 numpy 数组都是只读的,子进程只需要读不需要写,所以选择使用 RawArray。

    阅读更多…
  • 用 Numba 加速你的 Python 代码,性能轻松大提升

    Numba 简介

    Numba 是 Python 的一个 JIT (just-in-time) 编译器,最适用于 NumPy 数组、函数,以及 Python 循环。基本上,用法就是给原来的 Python 函数加一个修饰器,当运行到经 Numba 修饰的函数时,它会被编译为机器码,之后再调用时,就能以机器码的速度来执行了。

    按我上手使用的经验来看,Numba 对原代码的改动不是太大,对能加速的部分,加速效果明显;对不支持的加速的 Python 语句/第三方库,可以选择不使用 numba 来规避。这是我选择 Numba 的原因。

    首先:应该编译(优化)什么?

    由于 Numba 本身的限制(稍后介绍),不能做到对整个程序完全的优化。实际上,也没必要这样做——只需要优化真正耗时间的部分即可。

    怎么找到真正耗时间的部分?除了靠直觉,还可以借用工具来分析,例如 Python 自带的 cProfile,还有 line_profiler 等,这里不再细讲。

    安装

    可以通过 conda 或 pip,一个命令安装:
    conda / pip install numba

    什么样的代码能加速?

    按照官方文档的示例代码,如果代码中含有很多数学运算、使用 NumPy,或者有大量 Python 的 for 循环(这可是 Python 性能大忌),那么 Numba 就能给你很好的效果。尤其是多重 for 循环,可以获得极大的加速

    大家都知道,给一个 np.ndarray 加 1 是很快的(向量化、广播),但是如果 for 遍历这个 array 的元素再每个加 1就会很慢(新手容易犯的小错误);但是这都没关系,有了 Numba 再 for 遍历元素加 1,和直接用 ndarray 加 1 的耗时是差不多的!

    再举个例子,下面这段代码,就能享受到 JIT:

    from numba import jit
    import numpy as np
    
    x = np.arange(100).reshape(10, 10)
    
    @jit(nopython=True)  # 设置为"nopython"模式 有更好的性能
    def go_fast(a):  # 第一次调用时会编译
        trace = 0
        for i in range(a.shape[0]):   # Numba likes loops
            trace += np.tanh(a[i, i]) # Numba likes NumPy functions
        return a + trace              # Numba likes NumPy broadcasting
    
    print(go_fast(x))

    但是,类似下面的代码,Numba 就没什么效果:

    from numba import jit
    import pandas as pd
    
    x = {'a': [1, 2, 3], 'b': [20, 30, 40]}
    
    @jit
    def use_pandas(a):  # 这个函数就加速不了
        df = pd.DataFrame.from_dict(a) # Numba 不支持 pd.DataFrame
        df += 1                        # Numba 也不支持这个
        return df.cov()                # 和这个
    
    print(use_pandas(x))

    总之,Numba 应付不了 pandas。以我的经验,需要先把 DataFrame 转成 np.ndarray,再输入给 Numba。

    要强制用 nopython 模式

    刚才有效果的代码中,@jit(nopython=True) 这里传入了 nopython 这个参数,而没什么效果的代码中,就没有这个参数。为什么呢?

    这是因为,@jit 实际上有两种模式,分为别 nopython 和 object 模式。只有 nopython 模式,才是能真正大幅加速的模式。而 nopython 模式只支持部分的 Python 和 NumPy 函数,如果运行时用到了不支持的函数/方法,程序就会崩掉 (例如刚才不能加速的例子如果加上 nopython 就会崩) 。如果不强制设定 nopython 模式,编译函数失败时,会回退到 object 模式,程序虽然不会崩,但却偏离了我们给它加速的本意。

    我既然用了 Numba,我就希望它能真正地发挥作用。所以选择强制开启 nopython ,如果不能加速,不如让它直接崩溃,我们再作对应修改。

    阅读更多…
  • 安利一个美股历史数据Python库:yfinance

    相比A股和港股,(免费的)美股的数据没有那么容易拿到,而适合Python的source/library就更少了。

    最近找到一个免费、轻量的Python库——yfinance。整个库只有几个文件,数据从yahoo下载,免费无限制。安装及使用教程见上面的链接。

    无需申请token,即装即用,和tushare一样方便,值得拥有。赶紧 pip install 一个吧。

    附上 github 上的一点使用文档:

    import yfinance as yf
    
    msft = yf.Ticker("MSFT")
    
    # get stock info
    msft.info
    
    # get historical market data
    hist = msft.history(period="max")
    
    # show actions (dividends, splits)
    msft.actions
    
    # show dividends
    msft.dividends
    
    # show splits
    msft.splits
    
    # show financials
    msft.financials
    msft.quarterly_financials
  • (PyTorch)使用 LSTM 预测时间序列(股票)

    前言

    经本文的评论指出,本文中的代码的原理可能有严重的问题。当作是学习 pytorch 的语法就好了,在修复之前不要用于学术用途。Don’t take it serious!能赚钱的算法都不会公开🤣

    目标

    学习使用 LSTM 来预测时间序列,本文中使用上证指数的收盘价。

    运行环境

    Python 3.5+, PyTorch 1.1.0, tushare

    数据获取与处理

    首先用 tushare 下载上证指数的K线数据,然后作标准化处理。

    import numpy as np
    import tushare as ts
    
    data_close = ts.get_k_data('000001', start='2018-01-01', index=True)['close'].values  # 获取上证指数从20180101开始的收盘价的np.ndarray
    data_close = data_close.astype('float32')  # 转换数据类型
    
    # 将价格标准化到0~1
    max_value = np.max(data_close)
    min_value = np.min(data_close)
    data_close = (data_close - min_value) / (max_value - min_value)
    原始数据:上证指数从2018-01-01到2019-05-24的收盘价(未标准化处理)

    把K线数据进行分割,每 DAYS_FOR_TRAIN 个收盘价对应 1 个未来的收盘价。例如K线为 [1,2,3,4,5], DAYS_FOR_TRAIN=3,那么将会生成2组数据:
    第1组的输入是 [1,2,3],对应输出 4;
    第2组的输入是 [2,3,4],对应输出 5。

    然后只使用前70%的数据用于训练,剩下的不用,用来与实际数据进行对比。

    DAYS_FOR_TRAIN = 10
    
    def create_dataset(data, days_for_train=5) -> (np.array, np.array):
        """
            根据给定的序列data,生成数据集
            
            数据集分为输入和输出,每一个输入的长度为days_for_train,每一个输出的长度为1。
            也就是说用days_for_train天的数据,对应下一天的数据。
    
            若给定序列的长度为d,将输出长度为(d-days_for_train+1)个输入/输出对
        """
        dataset_x, dataset_y= [], []
        for i in range(len(data)-days_for_train):
            _x = data[i:(i+days_for_train)]
            dataset_x.append(_x)
            dataset_y.append(data[i+days_for_train])
        return (np.array(dataset_x), np.array(dataset_y))
    
    dataset_x, dataset_y = create_dataset(data_close, DAYS_FOR_TRAIN)
    
    # 划分训练集和测试集,70%作为训练集
    train_size = int(len(dataset_x) * 0.7)
    
    train_x = dataset_x[:train_size]
    train_y = dataset_y[:train_size]
    
    # 将数据改变形状,RNN 读入的数据维度是 (seq_size, batch_size, feature_size)
    train_x = train_x.reshape(-1, 1, DAYS_FOR_TRAIN)
    train_y = train_y.reshape(-1, 1, 1)
    
    # 转为pytorch的tensor对象
    train_x = torch.from_numpy(train_x)
    train_y = torch.from_numpy(train_y)
    阅读更多…
  • Python 的 __new__() 方法与实践

    本文主要转自:http://www.cnblogs.com/ifantastic/p/3175735.html

    __new__() 是在新式类中新出现的方法,它作用在构造方法建造实例之前,可以这么理解,在 Python 中存在于类里面的构造方法 __init__() 负责将类的实例化,而在 __init__() 启动之前,__new__() 决定是否要使用该 __init__() 方法,因为__new__() 可以调用其他类的构造方法或者直接返回别的对象来作为本类的实例

    如果将类比喻为工厂,那么__init__()方法则是该工厂的生产工人,__init__()方法接受的初始化参数则是生产所需原料,__init__()方法会按照方法中的语句负责将原料加工成实例以供工厂出货。而__new__()则是生产部经理,__new__()方法可以决定是否将原料提供给该生产部工人,同时它还决定着出货产品是否为该生产部的产品,因为这名经理可以借该工厂的名义向客户出售完全不是该工厂的产品。

    __new__() 方法的特性:

    • __new__() 方法是在类准备将自身实例化时调用
    • __new__() 方法始终都是类的静态方法,即使没有被加上静态方法装饰器

    类的实例化和它的构造方法通常都是这个样子:

    class MyClass(object):
        def __init__(self, *args, **kwargs):
            pass
    
    myclass = MyClass(*args, **kwargs)  # 实例化

    正如以上所示,一个类可以有多个位置参数和多个命名参数,而在实例化开始之后,在调用 __init__() 方法之前,Python 首先调用 __new__() 方法:

    def __new__(cls, *args, **kwargs):
        pass

    第一个参数cls是当前正在实例化的类。

    如果要得到当前类的实例,应当在当前类中的 __new__() 方法语句中调用当前类的父类的 __new__() 方法。例如,如果当前类是直接继承自 object,那当前类的 __new__() 方法返回的对象应该为:

    def __new__(cls, *args, **kwargs):
        ...
        return object.__new__(cls, *args, **kwargs)  # Python 2 是这样的,但这不适用于Python 3,会报错,后文不重复提示这点

    注意:
          事实上如果(新式)类中没有重写__new__()方法,即在定义新式类时没有重新定义__new__()时,Python默认调用该类的直接父类的__new__()方法来构造该类的实例,如果该类的父类也没有重写__new__(),那么将一直按此规矩追溯至object的__new__()方法,因为object是所有新式类的基类。
          而如果新式类中重写了__new__()方法,那么你可以自由选择任意一个的其他的新式类(必定要是新式类,只有新式类必定都有__new__(),因为所有新式类都是object的后代,而经典类则没有__new__()方法)的__new__()方法来制造实例,包括这个新式类的所有前代类和后代类,只要它们不会造成递归死循环。具体看以下代码解释:

    class Foo(object):
        def __init__(self, *args, **kwargs):
            ...
        def __new__(cls, *args, **kwargs):
            return object.__new__(cls, *args, **kwargs)    
    
    # 以上return等同于 
    # return object.__new__(Foo, *args, **kwargs)
    # return Stranger.__new__(cls, *args, **kwargs)
    # return Child.__new__(cls, *args, **kwargs)
    
    class Child(Foo):
        def __new__(cls, *args, **kwargs):
            return object.__new__(cls, *args, **kwargs)
    
    class Stranger(object):  # 在制造Stranger实例时,会自动调用 object.__new__(cls)
        ...
    
    # 如果Child中没有定义__new__()方法,那么会自动调用其父类的__new__()方法来制造实例,即 Foo.__new__(cls, *args, **kwargs)。
    # 在任何新式类的__new__()方法,不能调用自身的__new__()来制造实例,因为这会造成死循环。因此必须避免类似以下的写法:
    # 在Foo中避免:return Foo.__new__(cls, *args, **kwargs) 或 return cls.__new__(cls, *args, **kwargs)。Child同理。
    # 使用object或者没有血缘关系的新式类的__new__()是安全的,但是如果是在有继承关系的两个类之间,应避免互调造成死循环,例如:(Foo)return Child.__new__(cls), (Child)return Foo.__new__(cls)。

    通常来说,新式类开始实例化时,__new__()方法会返回cls(cls指代当前类)的实例,然后该类的__init__()方法作为构造方法会接收这个实例(即self)作为自己的第一个参数,然后依次传入__new__()方法中接收的位置参数和命名参数。

    注意:如果__new__()没有返回cls(即当前类)的实例,那么当前类的__init__()方法是不会被调用的。如果__new__()返回其他类(新式类或经典类均可)的实例,那么只会调用被返回的那个类的构造方法【不包括__init__()方法】

    class Foo(object):
        def __init__(self, *args, **kwargs):
            ...
        def __new__(cls, *args, **kwargs):
            return object.__new__(Stranger, *args, **kwargs)  
    
    class Stranger(object):
        ...
    
    foo = Foo()
    print type(foo)    
    
    # 打印的结果显示foo其实是Stranger类的实例
    
    # 因此可以这么描述__new__()和__init__()的区别,在新式类中__new__()才是真正的实例化方法,为类提供外壳制造出实例框架,然后调用该框架内的构造方法__init__()使其丰满。
    # 如果以建房子做比喻,__new__()方法负责开发地皮,打下地基,并将原料存放在工地。而__init__()方法负责从工地取材料建造出地皮开发招标书中规定的大楼,__init__()负责大楼的细节设计,建造,装修使其可交付给客户。

    ================ 以上是转载的原文 =========================

    下面是我的一点使用经验。此前我也没具体使用过__new__()方法,只是大概听过有这么一个事。

    最近项目新增了一种网络协议,而API不变,希望同时适配不同的网络协议(数据包中有给出版本号可以判断)。然后就想到了在实例化的__new__()方法里面返回一个其他类的实例,进而拜读了原文……

     

    粗略阅读原文后,写出来了类似这样的代码:

    condition = None
    
    class A(object):
        def __new__(cls, *args, **kwargs):
            print('A new')
            if condition == 'A':
                return object.__new__(cls)  # cls == A
            elif condition == 'B':
                return object.__new__(B)
    
        def __init__(self, value):
            self.value = value
    
    
    class B(object):
        def __new__(cls, *args, **kwargs):
            print('B new')
            return object.__new__(B)
    
        def __init__(self, value):
            self.value = value
    
    condition = 'A'
    a = A(123)
    print(type(a))
    print(a.value)
    
    condition = 'B'
    b = A(456)
    print(type(b))
    print(b.value)

    运行结果为:

    A new
    <class '__main__.A'>
    123
    
    A new
    <class '__main__.B'>
    Traceback (most recent call last):
      File "/xxxxx/main.py", line 31, in <module>
        print(b.value)
    AttributeError: 'B' object has no attribute 'value'

    A这块是正常的,而B这块就很不正常了:没有value这个属性不说,print(‘B new’) 都没有执行!
    ——这是 return object.__new__(B) 导致的,因为object的__new__() 方法没有 print(‘B new’) 这句。

    我们把 return object.__new__(B) 改成 return B.__new__(cls) ,像这样:

    class A(object):
        def __new__(cls, *args, **kwargs):
            print('A new')
            if condition == 'A':
                return object.__new__(cls)  # cls == A
            elif condition == 'B':
                return B.__new__(cls)

    这下执行结果有显示 B new 了。然而,’B’ object has no attribute ‘value’,还是没有。
    把 return B.__new__(cls) 改为 return B.__new__(cls, *args, **kwargs) ,把参数传进去,结果还是一样。

    难道是B类的问题?把它改成:

    class B(object):
        def __new__(cls, *args, **kwargs):
            print('B new')
            return object.__new__(B, *args, **kwargs)

    依旧报错(在Python 3下还会报 TypeError: object() takes no parameters)!有点抓狂了,再去精读一下,发现了上面被我标红的一句“如果__new__()返回其他类(新式类或经典类均可)的实例,那么只会调用被返回的那个类的构造方法”。就是说,__init__()方法没有被调用啊!我来手动调用一下:

    condition = None
    
    class A(object):
        def __new__(cls, *args, **kwargs):
            print('A new')
            if condition == 'A':
                return object.__new__(cls)  # cls == A
            elif condition == 'B':
                return B.__new__(cls, *args, **kwargs)
    
        def __init__(self, value):
            self.value = value
    
    
    class B(object):
        def __new__(cls, *args, **kwargs):
            print('B new')
            self = object.__new__(B)  # 创建对象
            self.__init__(*args, **kwargs)  # 初始化对象
            return self  # 初始化之后再返回结果
    
        def __init__(self, value):
            self.value = value
    
    condition = 'A'
    a = A(123)
    print(type(a))
    print(a.value)
    
    condition = 'B'
    b = A(456)
    print(type(b))
    print(b.value)

    这次终于和期望一致了……

     

    总结:

    1. 如果__new__()返回其他类的实例,那么只会调用被返回的那个类的构造方法【不包括__init__()方法】;
    2. 如果__new__()返回当前类的实例,可以直接 return object.__new__(cls) ,不需要手动传参数;若返回其他类的参数,需 return ClassName.__new__(cls, *args, **kwargs) 手动传参数,万万不能 return object.__new__(ClassName, *args, **kwargs) 。
  • 我的Appium学习记录—— iOS 10.3.2 + Appium Desktop 1.0.2 真机实战

    ===========分割线===========

    20180121更新,升级到了Appium Desktop 1.3.1,详细更新内容见本文末,建议阅读本文前先看最近更新的内容。

    ===========分割线===========

    上一篇文章中,进了Android的坑,这次,要跳进更大更深的坑——iOS。

    百度google了一轮,最大的感触是:好多教程都不适用啊!要么是Appium版本旧,要么是iOS版本旧。想找一篇详细的“从入门到放弃”的教程都没有,之前搭Android环境的时候,能搜到很多十分详实的教程,而iOS的就有点蛋疼了。
    然而,坑还是要入的,所以,就从搭环境开始吧。

    阅读更多…